Materials and Methods

Many good ideas for the development of airships have yet to be fully explored. Airship structures can be rigid, semi-rigid or non-rigid. Shapes can range from tubular to catamaran to disks or spheres. Similarly, many materials can be used to build envelopes and gas cells. Finally, many methods exist to adjust buoyancy. Ballast can be taken on/off, or gas can be vented (if hydrogen is used). The lifting gas can be heated, cooled or compressed. Aerodynamic lift can be obtained in conjunction with engine thrust. Of course, all these approaches can be used in some combination. At this point the dominant design for a cargo airship has yet to be proven, but BASI has come to come conclusions on our design of a robust airships for cold climates.

A rigid, tubular airship design has advantages in locations that experience wide temperature swings. The gas cells inside the hull of the airship can expand or contract with temperature changes and not affect the operations of the aircraft.

The BASI airship operates only from fixed bases, and lands on a rotating terminal. This allows for some systems to be located on the ground, rather than on the airship. For example, access to ground-power reduces the weight and need for on-board electrical power during mooring and transshipping cargo. Ground-handling equipment, e.g. fork-lift trucks, can be stages at the base. Perhaps most important, a simpler water-based ballasting system can be used water ballast can be available at each location to offset weight changes.

A hybrid-electric prolusion system is used to power the airship. Initially, standard turbine generators will be employed, but the plan is to eventually shift to hydrogen fuel in order to eliminate carbon emissions.

The gas cells are designed to hold either hydrogen or helium. The gas cells are protected with a proprietary system of fire-resistant materials and a fire wall.

Airship envelope inside the BASI Research Airdock.
Special gas holding materials being prepared for sealing at BASI’s, Ontario facility.
BASI has developed specialty materials and sealing methods to be used in their gas cell manufacturing. Gas cells are perhaps one of the most important structures of a buoyant aircraft and require special knowledge of how these cells work together to provide even lifting along the entire length of the aircraft. Shown here is Dale George who is seaming metalized films to calibrate the equipment in BASI’s Ontario location.